Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Hui-Ping Zhong, ${ }^{\text {a }}$ La-Sheng
 Long, ${ }^{\text {a }}$ Rong-Bin Huang, ${ }^{\text {a }}$ Lan-Sun Zheng ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\text {* }}$

${ }^{\text {a State Key Laboratory for Physical Chemistry of }}$ Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and
${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.056$
$w R$ factor $=0.125$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Amino-1,3-benzothiazole-2(3H)-thione

The two independent molecules of the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}_{2}$, are linked by two secondary amino-thione hydrogen bonds [3.344 (3) and 3.376 (3) \AA] to form a flat pseudo-centrosymmetric dimer.

Comment

Mercaptobenzothiazole exists in the thione form in the solid state (Chesick \& Donohue, 1971; Radha, 1985). The deprotonated anion forms a large number of N, S-chelated metal complexes, e.g. cadmium di(benzothiazolyl-2-thiolate) (Hursthouse et al., 1990) and tetramethylammonium tris-(benzothiazolyl-2-thiolate)nickelate (Rasper et al., 1990); the diorganotin derivatives show cytotoxocity (Xanthopoulou et al., 2003). Among the substituted compounds, the 5 -chloro derivative has been extensively studied in view of its use as a drug (Antoniadis et al., 2003).

(I)

The 5-amino-substituted compound, (I), exists with two molecules per asymmetric unit; these are linked by a pair of hydrogen bonds to form a pseudo-centrosymmetric dimer (Fig. 1 and Table 2). The parent compound, mercaptobenzothiazole, also exists as a hydrogen-bonded dimer (Chesick \& Donohue, 1971; Radha, 1985). The molecules feature both long [S1-C1 1.740 (3) \AA and S1-C2 1.751 (3) \AA; S1a-C1a 1.753 (3) \AA and $\mathrm{S} 1 a-\mathrm{C} 2 a 1.762(3) \AA$] and short $[\mathrm{S} 2-\mathrm{C} 1$ 1.688 (3) \AA and $\mathrm{S} 2 a-\mathrm{C} 1 a 1.672$ (3) \AA] C-S bonds (Table 1).

Figure 1
ORTEPII (Johnson, 1976) plot of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

Received 16 September 2003
Accepted 29 September 2003
Online 7 October 2003

Hence, the title compound can be regarded as the thione tautomer in the solid state.

In the crystal structure the 'dimers' are hydrogen bonded to symmetry-related molecules, forming a zigzag sheet-like structure (Table 2).

Experimental

An ethanol solution (50 ml) of m-phenylenediamine ($0.22 \mathrm{~g}, 2 \mathrm{mmol}$) and carbon disulfude ($15 \mathrm{ml}, 2.4 \mathrm{mmol}$), kept at 273 K , was stirred for 2 h . The solution was then heated at reflux for 12 h . The reaction was carried out under an N_{2} atmosphere. The solution was poured into water to afford a solid material that was recrystallized from ethanol.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}_{2}$
$M_{r}=182.26$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$a=5.1041$ (2) \AA
$b=20.3859$ (7) \AA
$c=15.3378$ (5) \AA
$\beta=96.279(2)^{\circ}$
$V=1586.4$ (1) \AA^{3}
$Z=8$

$$
\begin{aligned}
& D_{x}=1.526 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1662 \\
& \quad \text { reflections } \\
& \theta=2.4-23.3^{\circ} \\
& \mu=0.60 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.32 \times 0.12 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: none
9371 measured reflections
3531 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.125$
$S=0.95$

> 2332 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.046$
> $\theta_{\max }=27.5^{\circ}$
> $h=-5 \rightarrow 6$
> $k=-26 \rightarrow 19$
> $l=-19 \rightarrow 19$

3531 reflections
223 parameters

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{S} 1-\mathrm{C} 1$	$1.740(3)$	$\mathrm{S} 1 a-\mathrm{C} 1 a$	$1.753(3)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.751(3)$	$\mathrm{S} 1 a-\mathrm{C} 2 a$	$1.762(3)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.688(3)$	$\mathrm{S} 2 a-\mathrm{C} 1 a$	$1.672(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.344(4)$	$\mathrm{N} 1 a-\mathrm{C} 1 a$	$1.350(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.402(4)$	$\mathrm{N} 1 a-\mathrm{C} 7 a$	$1.392(4)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.391(4)$	$\mathrm{N} 2 a-\mathrm{C} 5 a$	$1.410(4)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	$92.1(1)$	$\mathrm{C} 1 a-\mathrm{S} 1 a-\mathrm{C} 2 a$	$92.5(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$116.8(3)$	$\mathrm{C} 1 a-\mathrm{N} 1 a-\mathrm{C} 7 a$	$117.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$109.8(2)$	$\mathrm{N} 1 a-\mathrm{C} 1 a-\mathrm{S} 1 a$	$108.7(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$128.2(2)$	$\mathrm{N} 1 a-\mathrm{C} 1 a-\mathrm{S} 2 a$	$127.4(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$122.0(2)$	$\mathrm{S} 1 a-\mathrm{C} 1 a-\mathrm{S} 2 a$	$123.9(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 n \cdots \mathrm{~S} 2 a$	$0.86(1)$	$2.52(1)$	$3.376(3)$	$177(3)$
$\mathrm{N} 2-\mathrm{H} 2 n 1 \cdots \mathrm{~N} 2 a^{\mathrm{i}}$	$0.86(1)$	$2.39(1)$	$3.223(5)$	$163(3)$
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{~S} 2 a^{\text {ii }}$	$0.85(1)$	$2.87(2)$	$3.641(3)$	$151(3)$
$\mathrm{N} 1 a-\mathrm{H} 1 n a \cdots \mathrm{~S} 2$	$0.86(1)$	$2.51(1)$	$3.344(3)$	$164(2)$
$\mathrm{N} 2 a-\mathrm{H} 2 n b \cdots \mathrm{~S} 2^{\text {iii }}$	$0.86(1)$	$2.96(2)$	$3.685(3)$	$143(3)$
$\mathrm{N} 2 a-\mathrm{H} 2 n b \cdots \mathrm{~S} 1 a^{\text {iv }}$	$0.86(1)$	$3.11(3)$	$3.726(4)$	$130(3)$

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $-x, 1-y, 1-z$; (iii) $1+x, y, z$; (iv) $1+x, \frac{3}{2}-y, \frac{1}{2}+z$.

The aromatic H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) in the riding-model approximation; the $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ (parent C atom). The N -bound H atoms were located and refined with an $\mathrm{N}-\mathrm{H}=0.86$ (1) \AA distance restraint.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 2027104, 20273052 and 20221002), the Department of Science \& Technology, China (grant No. 2002CCA01600), the National Science Foundation of Fujian Province (grant No. E0110001) and the University of Malaya for supporting this work.

References

Antoniadis, C. D., Corban, G. J., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Warner, S. \& Butler, I. S. (2003). Eur. J. Inorg. Chem. pp. 1635-1640.
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chesick, J. P. \& Donohue, J. (1971). Acta Cryst. B27, 1441-1443.
Hursthouse, M. B., Khan, O. F. Z., Mazid, M., Motevalli, M. \& O’Brien, P. (1990). Polyhedron, 9, 541-544.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Radha, A. (1985). Z. Kristallogr. 171, 225-228.
Rasper, E. S., Britton, A. M. \& Clegg, W. (1990). J. Chem. Soc. Dalton Trans. pp. 3341-3345.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xanthopoulou, M. N., Hadjikakou, S. K., Hadjiliadis, N., Schurmann, M., Jurkschat, K., Michaelides, A., Skoulika, S., Bakas, T., Binolis, J., Karkabounas, S. \& Charalabopoulos, K. (2003). J. Inorg. Biochem. 96, 425-434.

